「でんあつせんさ」に関連した中国語例文の一覧 -中国語例文検索

中国語辞書 - Weblio日中中日辞典 中国語例文
約36万の例文を収録
 
  手書き文字入力


Weblio 辞書 > Weblio 日中中日辞典 > でんあつせんさの意味・解説 > でんあつせんさに関連した中国語例文


「でんあつせんさ」の部分一致の例文検索結果

該当件数 : 504



1 2 3 4 5 6 7 8 9 10 11 次へ>

この基準電圧線Vref2は、固定電圧(VDD/2)が印加される。

该基准电压线 Vref2被施加固定电压 (VDD/2)。 - 中国語 特許翻訳例文集

続いて、時刻t8において、参照電圧VREFを電圧降下させて画素積分を開始させる。

接着,在时刻 t8,使参照电压 VREF电压下降来开始像素积分。 - 中国語 特許翻訳例文集

信号電圧V1が“VTT”である場合、供給ノードN101の電圧(電圧緩和トランジスタ102のソース電圧)は、“VTT−Vth”に設定される。

在信号电压 V1为“VTT”的情况下,供给节点 N101的电压 (电压缓和晶体管 102的源极电压 )被设定为“VTT-Vth”。 - 中国語 特許翻訳例文集

信号電圧VP1が“VTT−Vα”であり、信号電圧VN1が“VTT”である場合、供給ノードN201pの電圧(電圧緩和トランジスタ202pのソース電圧)は、“VTT−Vth”に設定され、供給ノードN201nの電圧(電圧緩和トランジスタ202nのソース電圧)は、“VTT−Vα−Vth”に設定される。

在信号电压 VP1为“VTT-Vα”、信号电压 VN1为“VTT”的情况下,供给节点 N201p的电压 (电压缓和晶体管 202p的源极电压 )被设定为“VTT-Vth”,供给节点 N201n的电压(电压缓和晶体管 202n的源极电压 )被设定为“VTT-Vα-Vth”。 - 中国語 特許翻訳例文集

このように構成することにより、制御電圧VMの電圧値を安定させることができる。

通过如此构成,能够使控制电压 VM的电压值稳定。 - 中国語 特許翻訳例文集

行選択Trは行選択を行い、電流経路の他端は内部電源電圧VDDに接続される。

行选择 Tr进行行选择,电流路径的另一端连接到内部电源电压 VDD上。 - 中国語 特許翻訳例文集

AD変換用参照信号SLP_ADCは、クランプ電圧に対してあるオフセット電圧をもった電圧から傾きが開始される。

用于 AD转换的参照信号 SLP_ADC从相对钳制电压具有某偏移电压的电压开始倾斜。 - 中国語 特許翻訳例文集

直流/直流電圧変換器248は、1ボルトの入力電圧で作動する低電力「昇圧」スイッチングレギュレータとして構成される。

DC至 DC转换器 248被配置为用 1伏特输入电压进行操作的低功率“升压”开关稳压器。 - 中国語 特許翻訳例文集

図2に図1の電圧供給回路及び電圧生成部の詳細図を示す。

图 2示出图 1所示的电压供给电路 107和电压发生器 201的细节。 - 中国語 特許翻訳例文集

調整器248は1ボルトの入力電圧を、残りの回路を作動させるのに十分な高い電圧まで昇圧する。

稳压器 248将 1伏特输入电压增加至充分高的电压,以向剩余电路供电。 - 中国語 特許翻訳例文集


この場合、供給ノードN201p,N201nの電圧(電圧緩和トランジスタ202p,202nのソース電圧)は、“VTT−Vth”に設定される。

该情况下,供给节点 N201p、N201n的电压(电压缓和晶体管 202p、202n的源极电压 )被设定为“VTT-Vth”。 - 中国語 特許翻訳例文集

なお、前述した動作例4の説明から明らかなように、複数の中間電圧(第2制御電圧)の印加順序は、画像取得の際における複数の制御電圧(第2制御電圧)の印加順序の逆となる。

从上面的操作实例 4的解释来看清楚的是,施加多个中间电压 (第二控制电压 )的次序与在获取图像时施加多个控制电压 (第二控制电压 )的次序相反。 - 中国語 特許翻訳例文集

また、図7(4)では、基準電圧駆動回路19aが駆動する基準電圧線Vref1,Vref2,Vref3の電位変化の特性e,f,gが示されている。

另外,图7(4)中表示出基准电压驱动电路19a所驱动的基准电压线Vref1、Vref2、Vref3的电位变化的特性 e、f、g。 - 中国語 特許翻訳例文集

画像データ受信回路6cは、例えば図22に示すように構成され、図6に示した基準電圧線Vref1,Vref2,Vref3が、各基準電圧駆動回路19cが駆動する2本の基準電圧線11cである基準電圧線Vref1,Vref3に、内部配線の基準電圧線11dである基準電圧線Vref2を加えた3本で構成されることが示されている。

图像数据接收电路 6c例如图 22所示那样构成,图 6所示的基准电压线 Vref1、Vref2、Vref3由各基准电压驱动电路 19c驱动的 2条基准电压线 11c即基准电压线 Vref1、Vref3加上作为内部布线的基准电压线 11d的基准电压线 Vref2后的 3条构成。 - 中国語 特許翻訳例文集

その結果、出力端子304out に負の出力電圧Vout が生成される。

结果,在输出端子 304out处产生负输出电压 Vout。 - 中国語 特許翻訳例文集

前記電圧/電流変換部は、演算増幅器の非反転入力端に電圧信号が印加されると、該当の電圧信号に比例する電流信号を出力するように構成されることができる。

电压 /电流转换部件可以被构造为,当电压信号被施加到运算放大器的不倒相输入端子时输出与相关电压信号成比例的电流信号。 - 中国語 特許翻訳例文集

サンプリングスイッチSW191A−1は、端子aが内部電圧生成回路180のDCバイアス電圧VDC11の供給ラインに接続されている。

采样开关 SW191A-1的端子 a连接至用于从内部电压生成电路 180供给 DC偏置电压 VDC11的线。 - 中国語 特許翻訳例文集

サンプリングスイッチSW191A−2は、端子aが内部電圧生成回路180のDCバイアス電圧VDC11の供給ラインに接続されている。

采样开关 SW191A-2的端子 a连接至用于从内部电压生成电路 180供给 DC偏置电压 VDC11的线。 - 中国語 特許翻訳例文集

サンプリングスイッチSW191A−3は、端子aが内部電圧生成回路180のDCバイアス電圧VDC11の供給ラインに接続されている。

采样开关 SW191A-3的端子 a连接至用于从内部电压生成电路 180供给 DC偏置电压 VDC11的线。 - 中国語 特許翻訳例文集

サンプリングスイッチSW191A−nは、端子aが内部電圧生成回路180のDCバイアス電圧VDC11の供給ラインに接続されている。

采样开关 SW191A-n的端子 a连接至用于从内部电压生成电路 180供给 DC偏置电压 VDC11的线。 - 中国語 特許翻訳例文集

比較器53の反転入力には、基準電圧Vrefが接続されている。

将比较器53的逆转输入与参考电压 Vref相连。 - 中国語 特許翻訳例文集

マークの配線を、それぞれ同じ電圧端子へ変更してください。

请把标志的配线分别变更为相同的电压端子。 - 中国語会話例文集

図4は、負電源304から出力される負の出力電圧Vout (アナログ負電圧AVSSwに対応する)の調整例を説明する図である。

图 4是描述从负电源 304输出的负输出电压 Vout(与模拟负电压 AVSSw相称 )的调整示例的图。 - 中国語 特許翻訳例文集

なお、第1制御端子Tc1に順バイアス電圧Vc1が印加される時には、第2制御端子Tc2に逆バイアス電圧Vc2が印加され、第1制御端子Tc1に逆バイアス電圧Vc2が印加される時には、第2制御端子Tc2に順バイアス電圧Vc1が印加される。

当正向偏置电压 Vc1被施加到第一控制端子 Tc1时,反向偏置电压 Vc2被施加到第二控制端子 Tc2。 当反向偏置电压 Vc2被施加到第一控制端子 Tc1时,正向偏置电压 Vc1被施加到第二控制端子 Tc2。 - 中国語 特許翻訳例文集

リセットトランジスタ22は、リセット線RESETの電圧によりオン・オフ制御され、そのオン期間においてFD25の電圧を電源26の電圧VDDに設定する。

复位晶体管 22通过复位线 RESET的电压进行导通 /截止控制,该导通期间中将 FD25的电压设定为电源 26的电压 VDD。 - 中国語 特許翻訳例文集

電圧調整部207は、複数の信号線対のうちいずれか1つに対応し、その対応する信号線対にそれぞれ接続される信号ノードNP1,NN1の電圧(信号電圧VP1,VN1)の中間電圧を制御電圧VMとして電圧緩和トランジスタ203p,203p,…のゲートおよび電圧緩和トランジスタ203n,203n,…のゲートに供給する。

电压调整部 207对应于多个信号线对中的任意一个,将与该对应的信号线对分别连接的信号节点 NP1、NN1的电压 (信号电压 VP1、VN1)的中间电压作为控制电压 VM,向电压缓和晶体管 202p、202p、…的栅极及电压缓和晶体管 202n、202n、…的栅极供给。 - 中国語 特許翻訳例文集

図14において、各基準電圧駆動回路19bは、同じ構成であって、1本の基準電圧線11bである基準電圧線Vrefとグランドとの間に直列接続された2つのNMOSトランジスタ30,31で構成されている。

图 14中,各基准电压驱动电路 19b的构成相同,包括串联连接于作为 1条基准电压线 11b的基准电压线 Vref与电路接地端之间的 2个 NMOS晶体管 30、31。 - 中国語 特許翻訳例文集

ステージSRから出力されたゲート電圧はゲート線G1〜Gnを介して伝達される。

通过栅极线 G1至 Gn传输在级 SR中输出的栅极电压。 - 中国語 特許翻訳例文集

明日の午前9時から午後5時まで電圧削減による節電が予定されている。

明天早上九点開始到下午五點因電壓消減需计划节电 - 中国語会話例文集

画像データ受信回路6aに接続される基準電圧線11aの本数は3本であり、各基準電圧駆動回路19aが並列に駆動する。

与图像数据接收电路 6a连接的基准电压线11a的数量为 3条,由各基准电压驱动电路 19a并行驱动。 - 中国語 特許翻訳例文集

直流/直流電圧変換器として構成される調整器248が設置される。

提供稳压器 248,其被配置为 DC至 DC转换器。 - 中国語 特許翻訳例文集

また、データ制御信号CONT2は、共通電圧Vcomに対するデータ信号の電圧極性(以下、「共通電圧に対するデータ信号の電圧極性」を「データ信号の極性」と略称する。)を反転させる反転信号を更に含む。

数据控制信号 CONT2还可包括用于相对于公共电压 Vcom使数据信号的电压极性反相的反相信号 (以下,“相对于公共电压 Vcom的数据信号的电压极性”被简单称为“数据信号的极性”)。 - 中国語 特許翻訳例文集

各比較器の一方の入力は垂直信号線VSLからの画素信号(リセット電圧、リセット電圧+変換信号電圧)であり、他方の入力は参照電圧生成回路8が順に出力する2つの参照信号(三角波信号)である。

各比较器的一方的输入是来自垂直信号线 VSL的像素信号 (复位电压、复位电压 +变换信号电压 ),另一方的输入是参照电压生成电路 8依次输出的 2个参照信号 (三角波信号 )。 - 中国語 特許翻訳例文集

一方、列方向に配置されるデータ転送回路の個数分の2n−1個の差動増幅回路の各他方の差動入力端には、基準電圧駆動回路群8の各基準電圧駆動回路が駆動する2n−1本の基準電圧線11の対応するものが共通に接続される、または、各基準電圧駆動回路が駆動する2n−2本の基準電圧線11に固定電圧が印加される1本の基準電圧線を加えた2n−1本の基準電圧線の対応するものが共通に接続される。

另一方面,配置于列方向的数据传输电路的个数个的 2n-1个差动放大电路的各另一个差动输入端公共连接有基准电压驱动电路组 8的各基准电压驱动电路所驱动的 2n-1条基准电压线 11中对应的基准电压线,或者公共连接有加入了向各基准电压驱动电路所驱动的 2n-2条基准电压线 11施加固定电压的 1条基准电压线后的 2n-1条基准电压线 11中对应的基准电压线。 - 中国語 特許翻訳例文集

走査駆動部400は、液晶表示パネル300のゲート線に接続され、ゲートオン電圧Vonとゲートオフ電圧Voffとの組み合わせからなるゲート電圧をゲート線に印加する。

扫描驱动器 450与显示面板 300的栅极线连接,并对栅极线施加由导通电压 Von和截止电压 Voff组成的栅极电压。 - 中国語 特許翻訳例文集

先に生成する三角波信号は、単位画素2aから垂直信号線VSLに出力される「リセット電圧」に対するもので、その後に生成する三角波信号は、単位画素2aから垂直信号線VSLに出力される「リセット電圧+変換信号電圧」に対するものである。

在先生成的三角波信号是从单位像素 2a输出至垂直信号线 VSL的“复位电压”所对应的信号,之后生成的三角波信号是从单位像素 2a输出至垂直信号线 VSL的“复位电压 +变换信号电压”所对应的信号。 - 中国語 特許翻訳例文集

各基準電圧駆動回路は、それぞれの出力端が本実施の形態での画像データ受信回路6に接続される複数の基準電圧線11の対応するものに並列に接続され、該複数の基準電圧線11を互いに異なる基準電圧で駆動する。

各基准电压驱动电路各自的输出端与连接于本实施方式的图像数据接收电路 6的多个基准电压线 11中对应的基准电压线并联连接,通过彼此不同的基准电压驱动该多个基准电压线 11。 - 中国語 特許翻訳例文集

前記電流/電圧変換部は、演算増幅器の反転入力端に電流信号が印加されると、該当の電流信号に比例する電圧信号を出力するように構成されることができる。

电流 /电压转换部件可以被构造为,当电流信号被施加到运算放大器的倒相输入端子时输出与相关电流信号成比例的电压信号。 - 中国語 特許翻訳例文集

基準電圧駆動回路19aでは、列選択信号が出力されて高レベルである期間では、基準電圧線Vref1を駆動するNMOSトランジスタ30と、基準電圧線Vref2を駆動するNMOSトランジスタ33と、基準電圧線Vref3を駆動するNMOSトランジスタ35とが共にオンする。

基准电压驱动电路 19a中,在列选择信号被输出而处于高电平的期间,驱动基准电压线 Vref1的 NMOS晶体管 30、驱动基准电压线 Vref2的 NMOS晶体管 33、驱动基准电压线 Vref3的 NMOS晶体管 35都导通。 - 中国語 特許翻訳例文集

電圧レギュレータ55は、たとえば、図8に示した特性と同様の制御特性を有しており、監視電圧の入力により、制御特性に従って調整された出力電圧を出力する。

例如,电压调整器 55所具有的控制特性与图 8所示的相似,并在输入监控电压时,输出根据控制特性调整的输出电压。 - 中国語 特許翻訳例文集

リセット信号が確定後、参照電圧VREFをリセット電圧に戻してコンパレータ108を元の反転していない状態に戻す。

在确定复位信号之后,使参照电压 VREF返回到复位电压,使比较器 108返回到原来的未反转的状态。 - 中国語 特許翻訳例文集

各保持回路Hnは、積分回路Snの出力端と接続された入力端を有し、この入力端に入力される電圧値を保持し、その保持した電圧値を出力端から電圧出力用配線Loutへ出力する。

各保持电路 Hn具有与积分电路 Sn的输出端连接的输入端,保持输入至此输入端的电压值,将该所保持的电压值从输出端输出至电压输出用配线Lout。 - 中国語 特許翻訳例文集

一実施形態において、バイアス電圧Vb417は、バンドギャップ回路(図示せず)によって生成される。

在一个实施例中,由带隙电路(未示出 )产生偏压 Vb 417。 - 中国語 特許翻訳例文集

また、電源IC561としてLDOを用いる場合において、GPS制御部121の動作保証電圧範囲に応じて選択されたLDO出力電圧よりもバッテリ200電圧範囲が低い場合には、バッテリ200電圧の監視は必要となる。

另一方面,在使用 LDO作为电源 IC 561的情况下,在电池 200的电压范围低于根据 GPS控制部分 121的操作安全电压范围选择的LDO输出电压的情况下,必须监视电池 200的电压范围。 - 中国語 特許翻訳例文集

第2のスイッチング素子TR2の入力電極は電圧信号線Vssに接続され、制御電極は第2のスキャン開始信号線STVP2に接続され、出力電極はゲート線G1〜Gn+1に接続されている。

第二开关元件 TR2的输入电极连接到电压信号线 Vss,控制电极连接到第二扫描开始信号线 STVP2,输出电极连接到栅极线 G1至 Gn+1。 - 中国語 特許翻訳例文集

係属中の米国特許出願明細書は、撚り線対電線を介して両方向伝播通信信号と共に供給される低電圧DCによって電力を供給される異なる電流センサ組立品を記載している。

未决的美国申请描述了不同的电流传感器组件,它们被经由双绞线连同双向传播的通信信号一起馈送的低压 DC供电。 - 中国語 特許翻訳例文集

このとき、(リセット電圧)と(リセット電圧+変換信号電圧)を垂直信号線VSLに出力している間は昇圧されないので、ソースフォロワ回路の動作点を気にすることなく、FD25の昇圧レベルを変えることができる。

此时,在将 (复位电压 )和 (复位电压 +变换信号电压 )输出至垂直信号线 VSL的期间不升压,因此,可以不需要在意源极跟踪器电路的动作点而改变 FD25的升压电平。 - 中国語 特許翻訳例文集

また、信号電圧VP1,VN1の相補的な変動に応じて電圧緩和トランジスタ202p,202nのコンダクタンスを相補的に変化させることができるので、信号電圧VP1,VN1の変動速度の劣化を軽減できる。

另外,由于能够对应于信号电压 VP1、VN1的互补变动而使电压缓和晶体管 202p、202n的电导互补地变化,所以可减轻信号电压 VP1、VN1的变动速度的劣化。 - 中国語 特許翻訳例文集

そして、温度センサ74の出力電圧は、定着制御部70に入力される。

温度传感器 74的输出电压被输入给定影控制部 70。 - 中国語 特許翻訳例文集

サンプリングスイッチSW191は、端子aが内部電圧生成回路180のDCバイアス電圧VDC11の供給ラインに接続され、端子bがキャパシタC191の一端に接続され、その接続点がバイアス電圧VBIAS11の供給ラインに接続されている。

采样开关 SW191的端子 a连接至用于从内部电压生成电路 180供给 DC偏置电压VDC11的线。 该开关的另一端子 b连接至电容器 C191的一端,并且连接点连接至用于供给偏置电压 VBIAS11的线。 - 中国語 特許翻訳例文集

1 2 3 4 5 6 7 8 9 10 11 次へ>




   

中国語⇒日本語
日本語⇒中国語
   

   

中国語⇒日本語
日本語⇒中国語
   


  
中国語 特許翻訳例文集
北京语智云帆科技有限公司版权所有 © 2011-2024

©2024 GRAS Group, Inc.RSS